Theoretical Investigation of the EPR g-factors for Yb³⁺ in YBa₂Cu₃O_{7- δ}

Hui-Ning Dong^{a,b}, Shao-Yi Wu^{b,c}, and Xiao-Bing Luo^a

^a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences,

Shenyang 110016, P. R. China

^c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

Reprint requests to Dr. H.-N. D.; E-mail:donghn@cqupt.edu.cn

Z. Naturforsch. **59a**, 346 – 348 (2004); received March 29, 2004

The EPR g factors g_{\parallel} , g_{\perp} for Yb³⁺ in YBa₂Cu₃O_{7- δ} are studied with perturbation formulas based on the cluster approach of the spin-Hamiltonian parameters for a 4f¹³ ion in tetragonal symmetry. In these formulas, the contributions to the EPR parameters of the covalency effects, the admixture between the J=7/2 and J=5/2 states and the second-order perturbation terms are all included. The used crystal-field parameters are calculated with the superposition model and the local structural data of Yb³⁺ in YBa₂Cu₃O_{7- δ}. The resulting EPR g factors for Yb³⁺ ions in the superconductor YBa₂Cu₃O_{7- δ} agree reasonably with the experimental values. The results are discussed.

Key words: Electron Paramagnetic Resonance; High-Tc Superconductor; Yb³⁺; YBa₂Cu₃O_{7- δ}.